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ANALYSIS OF FRINGE PATTERNS BY THE METHOD OF INTEGRAL BOUNDARY EQUATIONS 

IN THE SOLUTION OF PLANE ELASTOPLASTIC PROBLEMS 

S. L. Zolotukhin and V. K. Kosenyuk UDC 535.417 

In experimental studies of plane problems of the mechanics of deformable bodies by 
moire methods [1-3] or holographic interferometry with the use of superimposed interferom- 
eters [4], the information that is obtained is represented in the form of patterns of inter- 
ference fringes. By analyzing these patterns, it is possible to determine the stress and 
strain fields in the region being studied. There are various approaches and corresponding 
algorithms for solving problems [2, 5-9, etc.] based on determination of fringe-order func- 
tions N(x, y) in the region being studied, the transition from these functions to functions 
of the plane components of the displacements u(x, y) and v(x, y), and determination of their 
partial derivatives. 

The fact that the strain components are calculated by differentiating reconstructed 
functions makes these methods highly sensitive to errors and distortions in the initial data 
and to the choice for the criterion of their approximation. At the same time, the informa- 
tion obtained from the experiment is inadequate to correctly approximate the initial func- 
tions, since it is necessary to know not only the orders of the fringes at the boundaries 
of the region but also their derivatives. Application packages currently available for ana- 
lyzing fringe patterns [9-12] automatically sample and numerically filter the initial dana, 
which reduces the laboriousness of the calculations considerably. However, the algorithms 
used for subsequent analysis still have the deficiencies noted above. 

The authors of [13] noted the efficacy of synthesizing holographic interferometry and 
numerical potential methods to study the elastoplastic state of three-dimensional bodies. 
Here, to establish the stress-strain state inside the region, it is sufficient to have in- 
formation that can be obtained from the fringe patterns at its boundaries. Among the ad- 
vantages of this approach is the smoothing effect inherent in integral methods: the errors 
of the boundary conditions turn out to be considerably lower farther into the region than 
near the boundaries. 

In the present study, we examine the feasibility of using theoretical solutions ob- 
tained by numerical realization of the method of integral boundary equations (IBE) to ana- 
lyze fringe patterns in aN investigation of elastoplastic fields of stress and strain. 

i. Formulation of the Problem. Four fringe patterns are recorded [4] to find the 
plane components of the displacements u(x, y) and v(x, y) with the use of superimposed inter- 
ferometers. In this case, the values of the displacements can be found from the formulas 
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v = K v ( N  1 - -  N2)/2; 

u = I G ( N  ~ - -  N y 2 .  

( 1 . 1 )  

( 1 . 2 )  

Here, NI, Ni, N3, and N 4 are the orders of the interference fringes from the respective pat- 
terns; K v and K u are certain coefficients dependent on the light source that is used and on 
the parameters characterizing the conditions under which the patterns were recorded. 

When moire methods are used to study objects, the fringe patterns that are obtained are 
patterns of isolines of the fields of the displacements u(x, y) and v(x, y), the values of 
which are calculated from the formulas 

u ~- N ~ K ' G  (1.3) 

v = NvK'~ (i.4) 

(N u and N v are the orders of the fringes from the corresponding moire patterns; K u' and K v' 
are scale coefficients dependent on the scanning frequency and recording conditions). 

The interference patterns are analyzed in the following sequence. The region being 
studied is delimited by a certain smooth closed contour. The points of intersection of the 
interference fringes and this contour are found for each experimental pattern. Through ap- 
proximation, we reconstruct the fringe-order functions NI(~) , Ni(~) , N3(~) , N4(~) or Nu(~), 
Nv(~). We then use (1.1-1.4) to determine the displacements on the boundary of the region 
u($) and v($) (where ~ is the coordinate of a point on the contour of the boundary of the 
region S). These displacements are then used as boundary conditions to solve the two-dimen- 
sional elastoplastic problem. 

Thus, analysis of the interference patterns reduces to the numerical solution of a 
plane elastoplastic problem with assigned boundary conditions obtained from an experiment. 

2. Numerical Solution of a Plane Elastoplastic Problem by the IBE Method. The solution 
is constructed within the framework of the theory of small elastoplastic strains in combina- 
tion with the method of elastic solutions and use of the von-Mises-Huber yield condition 
[14, 15] 

~i ----- ~y, (2.1) 

i.e., plastic strain develops when the intensity of the stresses o i reaches the yield point 
of the material in tension ay. For a plane stress state 

2 2 ' .  
~i = V",~I - "i,~22 + ~22 + 3~1~, 

er = ( ] / 2 / 3 )  ] / ( e n  - -  e22) "~ + (%2 - -  %3) 2 + (%a - -  e ~ )  2 + 1.5~1~ 

( 2 . 2 )  

( 2 . 3 )  

(e i is the strain intensity). 

The method of elastic solutions is a method of successive approximation in which a nor- 
mal problem of the theory of elasticity is solved at each step. It is known that the basic 
equations of the theory of plasticity can be written in a form which is analogous to the 
corresponding equations of the theory of elasticity, with allowance for the action of cer- 
tain additional body #i and surface T i forces [14]. These forces are applied in the region 
of a plate and are determined as follows: for points inside the region 

,~ = ao~O/axj (i, ] = I ,  2); (2.4) 

for points on the boundary of the region 

T~ ~ (~:, ] i. = ~ n ~  = . 2 ) .  ( 2 . 5 )  

H e r e ,  o i j  ~ = ~  - ~ i j  a r e  c o m p o n e n t s  o f  t h e  a d d i t i o n a l  s t r e s s e s  c a l c u l a t e d  a s  t h e  d i f f e r , -  

ence between the stresses in the elastoplastic medium oijfr and the stresses in the analogous 
elastic region oij ; nj are the direction cosines of an external normal to the boundary of 
the region. 

321 



~ MPa 
500 
1 ~ 

,300- 

700 

P 

b" x 

li 

irl 

(11 [2) (.~)L i g, gg e;l ,  

6 5  l ,s  

i i 

0 e~. 70 z 

L2 

? 

Fig. 1 Fig. 2 

We have the following [15] for the stress components in an elastoplastic medium 

%1 = 2G* [e u + 9 " 0 / ( 1 - -  ~*)1, ( 2 . 6 )  

%~ = 2 G *  [~22 + p * 0 / ( t  - -  ~*)], %~ = 6%12, 

where 8 = ezz + E22; G* = oi/3g i is the variable shear modulus; D* = (0.5 - 31G*)/(I + 3IG*); 
X = (i - 2~)/E; E and ~ are the elastic modulus and Poisson's ratio of the material of the 
elastic medium. The functional dependence of o i on ei should also be known to solve the 
problem. Figure 1 presents the stress-strain curve of the material o i = f(si). 

As the initial approximation, we take the additional loads to be equal to zero and we 
solve the plane problem of the theory of elasticity. We determine the parameters of the 
stress-strain state o~ and ~ and the values of o i and si" For the plastic region (o i > • • 
Oy), we use the stress-strain curve o i = f(~i) to find the values of oi* that correspond to 

si. We then use Eqs. (2.6) to calculate the stress components oij*. This is followed by 

the use of (2.4) and (2.5) to calculate the additional body and surface forces. In the sec- 
ond approximation, we solve the initial boundary-value problem of the theory of elasticity 
with allowance for the action of the additional forces. The computing process is then re- 
peated again. It is ended when the difference between the results of two successive approx- 
imations is either sufficiently small or turns out to be within an acceptable range of accu- 
racy. Calculations we performed showed the rapid convergence of the process - two or three 
iterations were sufficient in many cases. 

Thus, the solution of the plane elastoplastic problem reduces to the solution of a cer- 
tain sequence of linearly elastic problems with allowance for additional body and surface 
forces applied in the plastic region. 

Two-dimensional linearly elastic problems are solvedhere by numerical realization of 
the method of integral boundary equations in accordance with the approach proposed in [16]. 
An assigned region ~ is examined as part of an infinite plate with unknown distributed loads 
qx and qy acting along the contours of its boundaries. It is also necessary to find values 
of qx and qy at which the specified conditions will be satisfied on the contours LI and L 2. 

The boundary of the region is divided into n sufficiently small sections within which 
we can assume that qx = const and qy = const. Using the solution for a concentrated force 

acting in a plane, by integrating over each section and summing over the contours of the 
boundaries we can obtain expressions for the stresses and the displacements at points of the 
region which include the boundary. If concentrated forces act inside the region, then the 
necessary terms are added to these expressions. 

The stresses and the displacements from the action of the concentrated force P in the 
direction of the x axis are found as 

cr~ . . . .  (3 + bt) + 2 ( i  + ,a) 
4n x ~ + y~ 

% . . . .  t - -  ~ - -  2 ( t  + ~) 4~; x 2 -JC y2 

( 2 . 7 )  
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" ~ ' v =  4 a ~ + v 2  l - - ~ t + 2 ( i + ~  

v~ P (I+~) 2 ,;' u=- -S -Kf f  p ln(x 2 + . f - ) + ( t + ~ t )  , v = ~  x +y" 

( 2 . 7 )  

(G is the shear modulus; x and y are the coordinates of the point where the sought quantities 
are determined relative to the point of application of the force; u and v are the displace- 
ments of points in the direction of the x and y axes). 

The displacements and stresses from the distributed loads qx and qy in a given section 
for points located outside the section are calculated from Eqs. (2.7) on the basis of the 
concentrated force, the latter being the resultant of these loads within the section of 
their application. The components of the stresses and the displacements for a point belong- 
ing to the section of application of qx and qy are found from the total action of the system 
of concentrated forces, which equivalently replaces a uniformly distributed load. In deter- 
mining the stresses in this case, we add to the calculated values additional terms which ac- 
count for singularity. These additional terms have the following form for the distributed 

load qx 

a~ = -+-(q~/2) cos ~z[i + (i + ,u) sin 2 o'.], (2.8) 

% = ~ ( q J 2 )  cos cz(sin 2 cz -- V c~ a ) ,  

"~xv = + ( q  J 2 )  s i n  a ( s i n  2 ~ - -  V cos" a)  

(~ is the angle formed by a normal to the contour of the boundary at the point being con- 
sidered and the x axis). 

In order to discretize the additional body forces, we use a coordinate grid to subdivide 
the region being studied ~ into subregions or elements. We check for the satisfaction of 
condition (2.1) for each element and we localize the plastic strain zone. At the center of 
gravity of an element belonging to this zone, we apply concentrated forces X and Y (Fig. 2) 
equivalent to the action of the additional body forces. The values of X and Y can be found 
directly from the equilibrium condition for this element when the additional stresses oij ~ 
act on its boundary. 

Expressions for the displacements containing the additional body forces X and Y and the 
unknowns qx and qy are introduced into the boundary conditions of the problem written for 

the midpoints of the sections of the contours of the boundary. We have a system of 2n equa- 
tions which are linear relative to qx and qy. The solution of this system gives us the com- 

pensating loads qx and qy and then yields the stresses and displacements on the boundary and 

inside the specified region ~. 

~. Example. We examined the problem of determining the stress and strain fields in a 
uniaxially tensioned plate with a central circular hole of radius R = 3 mm. The material of 
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the plate was alloy DI6T, with the parameters E = 6"104 MPa and D = 0.31. The geometric 
dimensions of the specimen: width 40.2 mm, thickness 1.06 mm. The stress-strain curve of 
the material is shown in Fig. i. The yield point corresponds to the values Oy = 310 MPa and 

~y = 0.005. 

The initial data for the numerical calculation was in the form of fringe patterns ob- 
tained in [4] with the use of superimposed interferometers. The specimen was loaded in 
stages. The stages corresponded to external loads p = 2.8, 5.6, 7.8, and 9.74 kN. Here, 
the normal stresses in the sections without a concentrator were 65.7, 131.4, 184.0, and 
228.6 MPa. The holograms were recorded by the double-exposure method - at the beginning and 
end of each stage. The boundaries of the ring-shaped region that was studied were the con- 
tour of the hole L I and a circle of radius 2R which was coaxial to the hole - the contour L 2 
(see Fig. 2). The functions of fringe order at the boundaries of the region were approxi- 
mated in accordance with [8], and the increments of the displacements were found from Eqs. 
(i.i) and (1.2) for each loading stage. The total displacements were calculated by adding 
these increments over all previous loading stages. 

The region and its boundaries were discretized with the use of a coordinate grid formed 
by a family of concentric circles and radial lines drawn with the same angular spacing. 

A program to determine the fields of the displacements (u, v), stresses (Ox, Oy, ~xy, 

and Or, o@, ~r@), and strains (Sx, Ey, ~xy and E r, ~@, ~rS) and the stress (o i) and strain 

(si) intensities was written in the language PL-I for an ES computer. The results of the 
calculations were printed in the form of tables of values and diagrams of isolines of the 
respective parameters, with an indication of the plastic strain zone. 

Figure 3 shows diagrams of isolines of the fields of o i (a) and E i (b) obtained for the 
third loading stage. Within the limits of the region being studied, the functions o i and E i 
are determined by lines corresponding to identical levels and numbered from 0 to i0. A 
change in the number by unity denotes increments in the functions Ao i = 33.6 MPa and Ag i = 
0.7-10 -3 The maximum value corresponds to line I0 (max o i = 338.7 MPa, max si = 7"05"10-3), 
while the minimum value corresponds to line 0 (min o i = 3.01 MPa, min E i = 0.5"10-4). The 
hatched region corresponds to the plastic zone of the material. In the given case, each 
boundary was discretized by 36 boundary elements, while the region that was examined was 
subdivided into 216 internal elements. The absence of external loads was taken as the bound- 
ary conditions for the internal contour in the solution of the problem. 

Tables 1 and 2 show values of the stresses and strains in the section x = 0 for four 
loading stages. Also shown for the first stage are the corresponding values of the param- 
eters from the known solution of the Kirsch problem for an infinite elastic region with a 
circular hole. Good qualitative agreement was obtained between the is01ines for the stress 
and st=ain fields and the values of the investigated parameters. The accuracy of these val- 
ues was sufficient for engineering purposes. 
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DETERMINATION OF STRESS INTENSITY FACTORS AT THE TIPS OF CRACKS GROWING 

FROM LOADED HOLES IN FINITE ANISOTROPIC PLATES 

V. N. Maksimenko UDC 539.43:621.8 

In pin, bolt, and rivet joints, stress concentration in combination with fretting be- 
tween the fastening element and the surface of the hole may lead to the formation of damages 
and defects. In order to be able to predict the safe life of a structure, it is necessary 
to be able to precisely calculate the limit load and estimate the growth of defects near 
fastener holes in such joints. A survey of the studies done in this area for isotropic elas- 
tic plates can be found in [i, 2], for example. Progress is being made relatively slowly in 
regard to the investigation of the problem for plates made of composite materials (see the 
surveys in [3-5], for example). The reason for this is a shortage of information on the ef- 
fect of the anisotropy of the material, the boundaries of the plate, and the type of load 
transmission on the stress intensity factors (SIF) at the tips of cracks near loaded holes. 

In the present study, we construct special representations of the solution of problems 
involving determination of the elastic equilibrium of a finite rectilinear anisotropic plate 
with a system of through slits and a loaded elliptical hole. Automatic satisfaction of the 
boundary conditions at the contour of the hole makes it possible to reduce the problem to 
the solution of a system of integral equations (IE) whose order is one less than the number 
of components of the boundary of the region. The absence of an unknown function at the 
boundary of the hole makes it possible to more efficiently find numerical solutions. Using 
the example of a rectangular plate with cracks originating from the contour of a hole loaded 
through a pin, we study the effect of anisotropy of the material, a wide range of pin-joint 
geometries, and different combinations of load transmission from the pin and seat with inter- 
ference on the value of the SIF at the tips of the cracks. Data for an isotropic material 
is obtained by taking the limit in the anisotropy parameters in a numerical solution. 

We will examine an elastic, rectilinearly anisotropic plate of constant thickness h 
bounded by closed contours A (an ellipse with the semiaxes a and b) and L 0 (smooth longi- 
tudinal external contour) and having n smooth internal through slits (cracks) Lj (j = i, n). 

The plate is loaded by a self-balanced system of external forces applied to L 0 and A. The 

edges of the slits L' = 0 Lj are not loaded. We will make the axes of symmetry of the el- 

lipse coincide with the axes of the Cartesian coordinate system xOy. As the positive direc- 
tion on L 0 we take the direction which leaves the plate on the left. On the slit Lj, with 

ends aj and bj, the positive direction leads from aj to bj. We direct the normal n to the 
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